Economic Rivalry, Irrigation Abstraction, And Partition to Fates

11th Annual Meeting of the International Water Resource Economics Consortium (IWREC) September 2014

B. Contor and Dr. R. G. Taylor

- 1992
 - 58 hectares
 - Groundwater source
 - Hand lines & wheel lines
 - 70% consumptive-use fraction of field-applied water

- 2014
 - 56 hectares
 - Groundwater source
 - Mostly pivots
 - Mostly 85% consumptiveuse fraction of field-applied water

- 1992
 - 58 hectares
 - Groundwater source
 - Hand lines & wheel lines
 - 70% consumptive-use fraction of field-applied water

- 2014
 - 56 hectares
 - Groundwater source
 - Mostly pivots
 - Mostly 85% consumptiveuse fraction of field-applied water

How do we assess irrigation improvements?

- Consider Irrigator Response
- Close the Water Budget
- Consider Economic Rivalry
- Do the Numbers

Consider Irrigator Response

Consider Irrigator Response

Consider Irrigator Response

• 1992

- 58 hectares
 - 47 hectares barley
 - 12 hectares alfalfa

- 2014
 - 56 hectares all alfalfa

Close the Water Budget

Take Home Messages:

- It is not complicated
- It MUST be sorted out

Percolation To Non-Usable Aquifers (or unused?)

- Abstraction (i.e. diversion)
 - Decreased after improvement (case specific)
- Transpiration
 - Increased after improvement (typical)
 - Lost to basin
- Evaporation
 - Increase or decrease?
 - Lost to basin
- Runoff
 - Typically would decrease
 - None in this case
- Percolation
 - Typically would decrease
 - Returns to pumped aquifer

Consider Rivalry

Take Home Messages:

and the second

100

- It is complicated
- It can be sorted out
- It MUST be sorted out

100 Kilometers

- Rivalry
 - The aquifer is connected to the springs that supply aquaculture
 - Therefore: The increase in net consumptive use is **rival** to aquaculture

Do the Numbers

- 1992
 - 617 K m³ pumping
 - 432 K m³ consumptive
 - 0.7 tonne/K m³ pumping (alfalfa)
 - 1.0 tonne/K m³ consumptive (alfalfa)
- 2014
 - 611 K m³ pumping
 - 502 K m³ consumptive
 - 0.9 tonne/K m³ pumping
 - 1.2 tonne/ K m³ consumptive

Is this Improvement?

- 16% increase in consumptive use
- Rival to aquaculture
 - 20 30% increase in "crop per drop"

'e

Is this Improvement?

- 16% increase in consumptive use
- Rival to aquaculture
 - 20 30% increase in "crop per drop"

NOT related to irrigation improvements

'e

How to assess irrigation improvements:

- Consider Irrigator Response
- Close the Water Budget
- Consider Economic Rivalry
- Do the Numbers

Thank You

bcontor@mirabwater.com

12 mile is esty

43

194

• gtaylor@uidaho.edu

Backup Slides

Z N

 \bigcirc

Û

и И

 \bigcirc

0

 \bigcirc

Z

Û

0

O

IRRIGATION DEMAND CALCULATOR: Spreadsheet Tool for Estimating Economic Demand for Irrigation Water

University of Idaho Idaho Water Resources Research Institute

> Bryce A. Contor Garth Taylor Greg L. Moore

> > August 2008

Idaho Water Resources Research Institute Technical Report 200803

REFERENCES

Allen, Richard G., and others. FAO Irrigation and Drainage Paper 56. Crop
 Evapotranspiration: Guidelines for Computing Crop Water Requirements. Rome,
 Italy: Food and Agriculture Organization of the United Nations, 1998

Allen, Richard G. October, 2007. Personal Communication. See also http://www.udiaho.edu/engr/decept/allenallen.htm>, accessed March, 2008.

- Barrett, J.W. Hugh, and Gaylord V. Skogerboe. "Crop Production Functions and the Allocation and Use of Irrigation Water." Agricultural Water Management 3 (1980): 53-64
- Brumbelow, Kelly, and Aris Georgakakos. "Determining Crop Water Production Functions using Yield Irrigation Gradient Algorithms." Agricultural Water Management 87 (2007): 151-161

Bureau of Reclamation, Pacific Northwest Region. AGRIMET January, 2008 http://www.usbr.gov/pn/agrimet/

Cook Zena Loel Hamilton Leroy Studick and P. G. Taylor. Spatial Equilibrium of

Sociology, University of Idaho. Unpublished ms., November 2004.

Dechmi, F. and others. "Analysis of an Irrigation District in Northeastern Spain II. Irrigation Evaluation, Simulation, and Scheduling" Agricultural Water Management 61 (2003): 93-109

Doorenbos, J., and others. FAO Irrigation and Drainage Paper 33: Yield Response to Water. Rome, Italy: Food and Agriculture Organization of the United Nations, 1979

English, Marshall J., Kenneth H. Solomon, and Glenn J. Hoffman. "A Paradigm Shift in Irrigation Management." Journal of Irrigation and Drainage Engineering 128.5 (2002): 267-277

Fereres, E., F. Orgaz, and F.J. Villalobos. "Water Use Efficiency in Sustainable Agricultural Systems." International Crop Science (1993): 83-89

Fereres, E., and Maria Auxiliadora Soriano. "Deficit Irrigation for Reducing Agricultural Water Use." Journal of Experimental Botany 58 (2007): 147-159

Kumar, R., and S.D. Khepar. "Decision Models for Optimal Cropping Patterns in Irrigations Based on Crop Water Production Functions" Agricultural Water Management 3 (1980): 65-76

Liu, W.Z., and others. "Interrelations of Yield, Evapotranspiration, and Water Use Efficiency from Marginal Analysis of Water Production Functions." Agricultur Water Management 56 (2002): 143-151

Martin, Derrel L., and others. "Evaluation of Irrigation Planning Decisions." Journal o Irrigation and Drainage Engineering 115 (1989): 58-77

Martin, Derrel L., Darrell G. Watts, and James R. Gilley. "Model and Production Function for Irrigation Management." Journal of Irrigation and Drainage Engineering 110 (1984): 148-165

Spreadsheet Tool: Economic Demand for Irrigation Water

XI	E D. G	·* - Ŧ						Dema	nd_Price_Effect.xls [Co	mpatibility Mode]	- Excel	
FIL	e Home	INSERT	PAGE LAYOUT FO	RMULAS DATA	REVIEW VIEW							
			Ruler Form	nula Bar 🔍 🛛			Split	C View Side by Side	ie E			
Norm	nal Page Break P Preview La	age Custom yout Views	Gridlines 🗹 Hea	dings Zoom 10	00% Zoom to New Selection Window	Arrange Freeze All Panes •	Unhide	Reset Window I	osition Windows •	Macros		
Workbook Views Show			1	Zoom		Wi	indow		Macros			
V18	•	XV	fr									
			J.4	(1	1		li ano	1			N
	A	В	C	D	E	F	G	H	I	J	K	L
1	One-crop	Demand p	per Unit Area	(1 Hectare)							
2												
3	ETm		Evapotransp	iration dept	h at full yie	1d			/		nice	
4	Im		Irrigation	depth at may	yield				()			
5	Ym		Yield/area	at full irri	gation				\	water	pecie	altier. Ik
6	Ya		Yield/area	rainfed (dry	(land)							
/	Pm		Commodity p	rice at full	irrigation,	currency u	nits pe	er yield un:	Lt			
8	Z		Exponent IO	r price rela	tionsnip (PC/	Pm) = (Y/Y)	n) ~ z				Bryce C	ontor
9	K		Yield/ET Co					bconto	r@mirol	woter.c		
10	ETa		Dryland ET	= effective	precipitation	1	• • • • • • • • •		i mar unun anne			
11	в		CU fraction	or applied	irrigation wa	ter at IUI.	L irrig	gation (this	s is one der	Inition of	irriga	ition er:
12	1		Irrigation Viold/basts	aeptn				-	<u>.</u>			
10	I		field/necta	re				Willingness to	o Pay for Irrigation	n Water	-	
14	PC		Conmodicy p	rice							-	(wh
10	R		Gross reven	ue/nectare			0.18					1
17	Crop Nom	201	Name	-			€ 0.16	1				0.9
10	Crop Name	3	Name				ta 0.17					0.8
10	T2 III ma		014				E 0.1					0.7
19	EIM		1220	mm		-	0.08	-				∈ ^{0.6} +
20	III		1320				J 0.06			-		e 0.5
21	IM		2 602560175	metric ton	unics/na		≧ 0.04	-		1		0.4
22	IQ		3.692360173	Metric ton			0.02					0.2
23	FIII		110.00	s/metric to	currency/unit	•	0	0.0	0.5 1.0	0	1.5	0.1
24	Z V		0.014770241	2 2				Irri	nation depth (I. meters)		0
25	Rmd		0.014//0241					(1 meter dep	th = 10,000 m^3 on or	ne hectare)		0
20	D		250					dR/d		Match Point		
28	В		0.5	20								
20	Match Dod	int from	Data	1		1		10	Corre Marta			
30	Hatti PO	LITE TTOM	Data						Crop vield			
31	т		500	mm			16.0	00				0.7
32	v		9.5	metric ton			14.0					0.6
33	Pw		0 11	currency/m^	.3		≌ 12.0	00 -				(9 0.5
24	-		0.11	_ ourronoy/m	× .		t 10.0	00		c.v g		

-

31 32

33

34

35

36

37

38

39

40 41

42 43

44 45

46

47

48

49

50

51

52

53

54

55

EC

	A	В	С	D	E	F	G	Н	I	J	I	
24		A = Irrigated area, acres										
25		PWV = Price of water, dollars/acre loot										
26		<pre>a = 1/B R = Revenue, dollars/acre Pm = Price of crop at full irrigation, dollars/crop unit z = price exponent</pre>										
27												
28												
29												
30												

Relationship between transpired water and dry-matter yield.

The relationship between full-season transpired water and dry-matter yield was describe as approximately linear by Doorenbos et al (1979; see also Allen et al 2002 (FAO56)). This relationship generally applies to the full-season growth of agronomic crops, across a wide range of crop types and climate regimes. Some imprecision is introduced by considering a harvested portion that is not the entire plant (for instance, harvesting only seeds or fruit) and by combining evaporation with transpiration. However, a linear relationship still generally describes crop yield as a function of evapotranspiration. The relationship terminates at an upper limit of yield and evapotranspiration determined by agronomic characteristics of the crop and site-specific constraints such as soils, solar radiation, temperature and day length. It may be expressed as:

(C1) Y = K1 (ET)

Relationship between applied irrigation water and crop yield.

No irrigation system is 100% efficient; if any meaningful quantity of water is delivere to an irrigated parcel, some of it is lost to other fates besides supporting crop evapotranspiration. Empirically and intuitively, we see that as irrigation depth increases, a smaller and smaller fraction is devoted to evapotranspiration and a larger and larger fraction is lost. At some depth of application, additional application of water begins to reduce yield. This is a classic example of decreasing marginal returns to a production input. The consequence is that, while the production function for transpired water is linear, the production function for applied water is non-linear. Th first derivative is monotonically decreasing with increased application depth.

Only the rising portion of the production function (first derivative positive) is of interest for economic analysis, since rational producers will never enter the region beyond zero marginal production. For this rising portion of the yield/applied water

L52	-	$: \times \checkmark f$	ŕ									
	A	В	С	D	E	F	G	Н	I	J	K	
52		first deriva	tive is	monotoni	ically dec	reasing v	vith incre	eased appl	ication de	pth.		
53					1					1		
54		Only the rising portion of the production function (first derivative positive) is of interest for economic analysis, since rational producers will never enter the region										
55												
56		peyona zero marginal production. For this rising portion of the yield/applied water relationship, an elegant production function by Martin et al (1984, 1989) incorporates										
57		the linear vield/evapotranspiration relationship of Doorenbos et al (1969) with the										
58		consumptive-	one linear yield/evapouranspiration relationship of boorenbos et al (1979) with the consumptive-use fraction considerations described above. It expresses the relationship									
59		in terms of	dryland	and full	l-irrigati	ion yield	character	ristics. 1	Equation (C2a) is t	he	
50		original presentation. Equation (C2b) rearranges terms and makes one substitution for										
51		convenience:										
52		(02-) V - V	al (Ven	v-1) [1 (1 T	$(T_m) \wedge (1/p)$	1					
53		(C2a) I = I (C2b) V = V	u + (1111 m - (Vm	– ra) (– vd) (1	I = (I = I)	'IM) (I/В) `э						
54		(022) 1 1		10, (1	,,	u						
55		Relationshi	p betwe	en applie	ed water a	and commo	dity price	e.				
56												
57		For some ir	For some irrigated crops the value of dry matter production is essentially independent									
58		of crop yiel	d. For	other ci	cops, as v	vater stre	ess reduce	es yield, (quality an	d therefo	re	
59		(C3b) expres	commodity price also decline dramatically. As a first approximation, equations (C3a) and									
70		is needed in	is needed into the proper functional form of this relationship.									
71								-				
72		(C3a) Pc/Pm	= (Y/Y)	m)^z								
73		(C3b) Pc =	Pm (Y/Y	m)^z								
74		Low values	ot "7"	correspor	d to grou	ne whoen t	zalue is i	nconcitiv	a to irrio	ation ada	anaca	
75		such as past	ure and	forage.	Higher V	zalues com	rrespond t	to crops w	e co irrig here quali	tv and pr	ice	
76		are sensitiv	e to ad	equacy.						oj unu pi		
77												
78		Multiplying Equation (C2) by commodity price to obtain revenue generates a function that expresses revenue as a function of application depth. The first derivative is the										
79												
30		marginal production value, which we assume here to be the marginal utility and therefore the economic demand. Contor et al (2008) derived a demand equation that assumed a constant commodity price (i.e. parameter "z" equals zero). However, it is more correct										
31												
32		to instead u	se the	vield-der	pendent p	cice defin	ned by eau	ation (C3)	b).		2000	

constant commodity price (i.e. parameter "z" equals zero). However, to instead use the yield-dependent price defined by equation (C3b).

205		$ \rightarrow $									
	A	B C D E F G H I J									
89		* [(a/Im) (1 - Yd/Ym) (1 - I/Im)^(a-1)]									
90											
91		Since gross crop revenue is price times yield, per-acre revenue is:									
92											
93		(C6) R = PC Y									
94		By the product rule, the partial derivative of per-acre revenue with respect to									
95		irrigation depth is:									
96											
97											
98		(C7) $dR/dI = Pc (dY/dI) + Y (dPc/dI)$, or in other words									
99		(C8) $dR/dI = [Equation (C3b) times Equation (C4)]$ plus									
100		[Equation (C2D) times Equation (C3)]									
101		This can be expressed as:									
102											
103		(C9) $dR/dI = Pm [(Ym - (Ym - Yd) (1 - I/Im)^a)/Ym]^2$									
104		* [(a/Im) (Ym - Yd) (1 - I/Im)^(a-1)]									
105		$+ [Ym - (Ym - Yd) (1 - (I/Im))^a]$									
106		* $[z Pm [1 - (1 - Yd/Ym) (1 - 1/1m)^a]^(z-1)$ * $[(z/Tm) (1 - Yd/Ym) (1 - T/Tm)^a]^(z-1)]$									
107		(a^{-1})									
108		Equation (C9) gives the per-acre demand for irrigation water depth for a single crop.									
109		For practical use, it requires conditional constraints to avoid indicating negative									
110		prices at very high quantities, or negative quantities at very high prices. Further,									
111		application in horizontal summation to obtain aggregate demand requires consideration									
112		total acreage irrigated, for each crop.									
113											
114		Assumptions. The following assumptions are applied to determine acreage by crop:									
115											
116		1. Total irrigated acreage may be less but cannot be more than some fixed total acreage									
117		2. We assume that the acreage of the highest revenue-per-acre crop is limited by									
118		something other than available water, such as:									
119		a. Agronomic rotation requirements;									
120		c. Management;									